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In this paper we demonstrate that an excellent fit to the phonon spectrum of a simple metal,
magnesium, may be obtained with a local pseudopotential containing only two adjustable param-
eters. We compare the spectrum obtained with a fixed pseudopotential using different dielec-
tric response functions. The Hubbard dielectric function yields phonon frequencies 30% greater
than the Kleinman-Langreth one, with the random-phase approximation yielding intermediate

frequencies.

I. INTRODUCTION

There have recently appeared a plethora of cal-
culations of the phonon spectrum of magnesium.
The first to appear, that of Roy and Venkataraman, 1
unfortunately contained errors in the secular de-
terminant. Schneider and Stoll? obtained a nearly
perfect fit to the experimental curves in the [0001]
and [0110] wave-vector directions using a pseudopo-
tential containing four adjustable parameters, where-
as Brovman, Kagan, and Holas® needed to introduce,
in addition to the pseudopotential, four short-range
force constant parameters to obtain a good fit. Pin-
dor and Pynn* used the optimized model potential
(whose parameters are obtained by fitting the atom-
ic spectra and not adjusted to fit the phonon spec-
trum) to obtain a poor fit to the phonon spectrum.
Gilat, Rizzi, and Cubiotti® obtained a nearly perfect
fit using the same method by arbitrarily replacing

the electron mass with an effective mass m*=1.60m.

Shaw and Pynn, ® taking exchange and correlation
into account, effected a large improvement on the
results of Pindor and Pynn* but still did not achieve
a perfect fit to the experimental spectrum. Most
recently, Prakash and Joski,” using a “first-prin-
ciples” potential containing a Kohn-Sham® exchange
potential screened by a procedure® we believe to be
incorrect, !° obtained a poor fit to the experimental
phonon spectrum.

A secondary purpose of this paper is to demon-
strate that a very good fit of phonon spectrum of
magnesium can be obtained using a local pseudo-
potential containing only two adjustable parameters.
When such a local pseudopotential is used, all ex-
change and correlation interactions between con-
duction electrons enter the calculation through the
dielectric response function. It is the primary pur-
pose of this paper to study the effect of various di-
electric functions on the phonon dispersion curves.
Because there is no way of knowing the “correct”
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pseudopotential (or of calculat‘mg with sufficient
accuracy a first-principles potential) we arbitrarily
choose the pseudopotential to fit the phonon spectrum
when the Kleinman-Langreth!!—*? dielectric function
is uséd, and then using the same pseudopotential
with the random-phase approximation (RPA) and
Hubbard!* dielectric functions, we recalculate the
phonon spectrum. Thus we do not prove the su-
periority of €y, to €y or €zp, (that has been done
elsewhere!!™!%) but merely demonstrate how sen-
sitive the phonon spectrum is to the choice of €.

II. PHONON SPECTRUM

The phonon spectrum w(J) is obtained by solving
the secular equation'®

det{(M, M, )™ /2E,,°1§? @) - wz(ﬁ)ébblﬁas}= 0, 1)
with

2
ER@- 3 I ogpap e T, @)
where _ﬁm is a vector to the mth lattice point, ﬁmb
is a vector to the bth atom in the mth cell, and the
a, B superscripts indicate x, y, and z components.
E(ﬁm,,) is the total ionic potential energy of the crys-
tal including a direct ion-ion interaction energy
plus the energy of the conduction electrons respond-
ing to the ionic potential. The former, E'°", is
given by the Ewald-Fuchs formula.!® The conduc-
tion electron contribution to E(R,,;) is given by!7!8

E*M=_ 3 (Qk?/16m\)[1 - 1/e()]| 2 Vi, e % Emo|2
K mb
3)

where

Vie=(1/9) [ VIE) e * . (4)
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FIG. 1. Symmetry points in hexagonal Brillouin zone.
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FIG. 2. Theoretical phonon dispersion curves (using
€xy) and experimental data points (taken from Ref. 6).

Q is the unit cell volume (two atomic cell volumes
in hcp magnesium), N is the number of unit cells in
the crystal, €(k) is the dielectric response function,
and V{ (¥) is the ionic pseudopotential.® In the Ap-
pendix we compute E2%(q) from E!°® and E°°™,

We used an ionic pseudopotential of the form

VI(F) = - ZZ(l + '}/)/’V bl OEZ[ f §023p(7’) d37’] 90239(7’) )
(5)

where ¢, is a parametrized Slater?® magnesium
core function

Prep= gy-1 /2 o3 92587 (6)

witht = [ "2 ¢85 3% and E, is some average of
(Ezgy2p = Econa)- The parameters o and 8 which are
expected to be close to unity were chosen to be

0=3.9378/E,, B=1.1725 (7)

in order to fit the phonon dispersion curves when
€x1 (k) is used in Eq. (3). Since E; is about 6 Ry
or less, ?! we see that o and j are close to unity as
expected.

Z=2 is the valence charge of magnesium and Y,
which represents the depletion hole (the charge
missing from the plane-wave conduction electrons
in the core region due to their orthogonalization to
the core electrons), is given by

7:<klplk>av[1"'<k!P‘k>av]—l’ (8)

where P is the core projection operator and (¢ |P|k),,
=0. 850 for magnesium according to Harrison. 2
The dielectric function €y, (k,w =0) is given by!!'13

B+AlE(k)+[B-Al(k) ) -1

1

©)
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FIG. 3. Comparison of phonon dispersion curves in three directions obtained using st aldashed), ey(dots and dashes),
and €gp,(solid lines).

_L2 2 2 10 was made to compensate for the fact that the Bril-
A=/ Qaky+ Ko, (10) louin zone has larger dimensions in the base plane.
B=3x%/(2aki+k*+K?), (11) For =0 there is much cancellation within each set

of reciprocal lattice vectors in the sums (A4)—(A7)
(k)= 2(1+ Y)ZF - K+ A(K)) 2 and the convergence is rapid. As { gets large and
|_ 2k the various (G+q) have different magnitude, the

cancellation within each set of reciprocal lattice

vectors disappears and the convergence becomes
(12) poor. We chose the Ewald convergence factor in
(A2)-(A5) to be n=4/a. With this choice, the con-
tributions of (A2) and (A3) could be completely ne-
glected while (A4) and (A5) were still better con-
verged than the conduction electron contributions
(A6) and (A7). The phonon spectrum was calculated
for { vectors along the symmetry directions I'K,
I'M, MK, andTA shown in Fig. 1. In Fig. 2 we show
the spectrum along with the experimental data. 2%
We have not made any correction for the lack of
convenience in the sums (A4)-(A7) as the param-
eters in Eq. (7) were chosen to give the best fit to
the experimental data for the 681 reciprocal lattice

K2+ Ak)+ 2ka

X
In K2+ Alk) — 2cky

(K + A(K))]

Yol = (1+'}’) [kz (Kz.;KA(K)>2:| i AG) < 2ek, - 2

=0, otherwise (13)

Ak)= (4/3m) B3 [12/(2ak+ k2 + K2)(2ak2+ K?)], (14)

a= %(1+e-n/2kf) , (15)

and the Thomas-Fermi value of the screening con-
stant is taken, K2=4k/m.

The calculation was performed using lattice con-
stants'"® 5=6.026 and c=9.784. We used 681 re-
ciprocal lattice vectors in the sums (A4)-(A7) which
roughly form a spheroid in K space of radius Tky i.
the base plane and 6k, along the z axis. This choice

vector expansion.

We have studied the convergence properties of the
calculation in the following manner. We have cal-
culated the eigenfrequencies at the equivalent points
M and M’ (see Fig. 1). Because |Qu | =v31q,!, the
convergence at M’ is much worse than at M and con-
siderable difference exists between the calculated
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TABLE I. Calculated frequencies (in THz) at equivalen
points M and M’ without and with convergence correction.

o« — ——

M M Moony Mg
Mj 3.76 4.14 3.67 3.67
M; 4.15 4.58 3.90 3.93
Mj 5.25 5.52 5.19 5.18
Mj 6.01 6.28 5.87 5.79
M; 6.63 6.68 6.54 6.54
M; 6.98 7.03 6. 89 6.89

values in Table I. Now because of time reversal
symmetry, w? may be expanded in powers of ¢2 and
so may dw?, the convergence error. If we assume
perfect convergence at ¢ =0 and drop all higher
powers of g% we have

6w,=bgsd’, (16)

where the subscript p indicates the phonon mode
and the subscript q indicates that b;, is a function
of the direction of the q vector though not of its
magnitude. Because of a o, reflection plane, the
dispersion curves along g, must be symmetrical
about M. By adding 6w? to the calculated frequen-
cies at two ¢, points equidistant from M, one may
determine what value of b; is needed to make the
two frequencies equal. Then

Mpconv:M.b+ bMp qil' (17)

A similar procedure was carried out for the M’
point using the o, reflection plane. M,,,, and My,
are listed in Table I; the agreement is perfect for
modes vibrating in the xy plane and quite good for
the z modes.

Using the same pseudopotential parameters [Eq.
(7)], we have calculated the phonon curves replac-
ing €xy by €gpy and €y, where

€xpall)=1+x50(k), (18)

€x=1+x0)1 = Axyo)]™ (19)

where y,, is given by Eq. (12) with A set equal to
zero and A is given in Eq. (10). The Thomas-Fer-
mi value was again used for K2 but Hubbard’s!*
choice of o= 3 was used instead of Eq. (15).2 The
dispersion curves for the three dielectric functions
are compared in Fig. 3. These emphasize the sen-
I

» = [04 (FMR,) 27
aoB ionI _ *2 ’ . o ) n
[E5 (@] 2z nZ cosq R, [_&Ri (“Rn +Tle

2
nb’
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2,2
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Ry
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sitivity of the phonon dispersion curves to the choice
of dielectric function. It is interesting to note that
even though they give very similar corrections to
the RPA pair distribution function, ®* €4 and €y,
cause changes in the RPA phonon dispersion curves
of opposite sign.

It is interesting to note that the exchange cor-
rected dispersion curves of Shaw and Pynn® lie
below their RPA dispersion curves. For large
wave vector their exchange correction becomes
just Hubbard’s. We, on the other hand, have found
the Hubbard exchange corrected dispersion curves
to lie above the RPA. The reason for this is quite
simple. Shaw and Pynn use an afomic model po-
tential?” which presumably contains all exchange
and correlation corrections to the potential. Their
RPA result then subtracts off half the direct Cou-
lomb conduction-electron—conduction-electron in-
teraction but no exchange while their Hubbard re-
sult subtracts off half the Coulomb and half the
Hubbard exchange interactions. We, however use
an Zonic pseudopotential and add half the Coulomb
and Hubbard exchange contributions. Presumably,
had Shaw and Pynn used the KL exchange correc-
tion, they would have obtained dispersion curves
lying above their RPA dispersion curves, again
opposite to our result. The use of an atomic model
potential seems inappropriate to us in view of the
fact that there is no exchange between the valence
electrons in the ground state of atomic Mg.

APPENDIX

We here calculate EZ5 () from Eq. (2). The
Ewald-Fuchs'® formula for the energy of a crystal
consisting of positive point ions® sitting in a con-
stant background of negative charge may be written!’

- 47N 4NN FMIR,-R,,
E‘°“=Z"‘2<*S2 7;, UL ———F“L—"M—Yg SE D
n m nb#mbd’ nb mb’

4 iRy~ Roppe ) B 4R -2>
= 2 e nb™Emb’ ) o k™), (A1)
NQ nbmbd’ k

where Z*=(1+v)Z and
F(x)=(@/V1) ["e ay.

Substituting the third term of Eq. (A1) into Eq. (2)
we obtain

R: \ R} Vr  RZ2

, + e
R3, vm  R%, VT
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g @)= 2272, o't pn (FfMa) T gty

Rnb’ b

Rnb’ b

2 3
Rnbl b Rnb’ b \[7[
where R, ,= IRy, — Ry | and we have used

Z Ry =Ry )=NZ fRypes) .

Substituting the last term of (A1) into (2) yields

Q

. 8 Z*Z (G %G 8 N 2 anB
[E58 @)]tor 1= 20 (Z( +9)*(G +q) e~ @R 1an? _ 5 G g

7 1G+ql?

[E;xbﬂl (a)]lonllz 8'”Z*z Z (G"' q)u(G+ q)B e-(G+a)2/4'n2e‘(aﬁ)'(ﬁ%-ﬁoy),

Q 7 1G+qI?

2
&fmﬁﬁu(” (1Rpy ) | 671 o Rno'

where the G are reciprocal lattice vectors and we have used

) e"”z'q)"Rn'ﬁm’=N263,§_a

nm

Finally, substituting Eq. (3) into Eq. (2) we obtain

(Eg@I=7 % G+ 37 (1 @) | hal*c 06 o

L 2 GZ( 1- : > ,VélzG“GB(eia'ﬁob’+e'ia'ﬁow),

167 Gy €(G)

aB (> ccncl___Q = "2( __1___
[Ebb' (q)] = 87 % (G+Q) 1 €(§+a)

Note that in the G -0 limit V1 ~872*/QG? and
[1-1/€(G)] ~1 so that the second term of (A6) can-
cels the second term of (A4). Note also that for
the hep structure

Epf(q)=E(@)*.

Finally we note that our dynamical matrix differs
from Gilat et al.® in two respects aside from a fac-
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4n® 2.2
e-02/4n2 _é_(ei('}'-fi'(,b.+e-ié'°ﬁ0b,)) , (A4)
fe G
(A5)
(A8)
) | VEal*(G+ %G+ ) &' C O Ros-Fow), (A7)

tor of 2 due to our use of Rydberg atomic units.
Our Eq. (2) has a phase factor §- (R, - R,) rather
than - (R,,, — R,p) leading to a factor of e*3"‘Fop-Fopr)
in all b5’ matrix elements and we have not sub-
tracted

9%E

from our matrix as they have.
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The following two equations are proposed for the temperature dependence of the elastic
stiffness constants: ¢;; = c(,?j ~s/(e!/T-1) and Ci; =aq—-bT%/(T+c), where c?, , S, t, a, b, and
c are constants. The applicability of these two equations and that of Wachtman’s equation is
examined for 57 elastic constants of 22 substances. The first equation has a theoretical justi-

fication and gives the best over-all results.

Neither of the three equations give the theoret -

ically expected T dependence at low temperatures, and therefore they are not expected to give
very accurate results at very low temperatures (S ©p/50). A new melting criterion is also

examined.

I. INTRODUCTION

The theory of the temperature dependence of the
elastic constants was first developed by Born and
co-workers. ! In this theory, the temperature de-
pendence of the elastic constants arises from the
variation of the lattice potential energy due to an-
harmonicity. In the limiting cases, the theory!:?
shows that the lattice contribution to ¢ ;;(T) - c,;,;(0)
should vary as T* at very low temperatures and as
T at high temperatures. Here c¢,;; represents an
elastic stiffness constant.

During the last two decades the variation of the
elastic constants with temperature has been mea-
sured for a large number of substances. On the
experimental side, in Fig. 1, we show a typical set
of data. The general pattern conforms to theoreti-
cal expectation. However, the T'* dependence at
low temperatures has not yet been unambiguously
established; the scanty evidence which is available

appears to indicate that its range of validity is
rather small. Further, some metallic substances
have been found®=® to show a T2 dependence at low
temperatures. Bernstein® has shown that such a
dependence can arise from the temperature depen-
dence of the electron energy due to the Fermi-Dirac
distribution of electrons.

We may note here that there are many substances
whose one or more elastic stiffness constants do not
show the type of behavior shown in Fig. 1 (e.g.,
see figures in Hearmon”). In the present paper we
shall not consider such elastic constants, but con-
fine ourselves to those that show the regular be-
havior typified in Fig. 1.

Attempts have been made to represent the tem-
perature dependence of elastic constants by empiri-
cal equations. We quote here three of these.

Sutton® was able to represent the variation of ¢4,
of aluminum over the range 63-773 °K with an ac-
curacy better than 3% by the following equation:



